
Introduction to

Artificial Intelligence

Chapter 4

Search in Complex Environments

Wei-Ta Chu (朱威達)

1

• The search algorithms that we have seen so far are designed to explore search

spaces systematically. When a goal is found, the path to that goal also

constitutes a solution to the problem.

• In many problems, however, the path to the goal is irrelevant. In the 8-queens

problem, what matters is the final configuration of queens, not the order in

which they are added.

• We need algorithms not worrying about paths at all.

Local Search Algorithms and Optimization

Algorithms

2

• Local search algorithms operate using a single current node and generally

move only to neighbors of that node.

• They use very little memory—usually a constant amount

• They can often find reasonable solutions in large or infinite (continuous)

state spaces for which systematic algorithms are unsuitable.

• Local search algorithms are useful for solving pure optimization problems, in

which the aim is to find the best state according to an objective function.

Local Search Algorithms and Optimization

Algorithms

3

Local Search Algorithms and Optimization

Algorithms

4

• The hill-climbing search algorithm (steepest-ascent version) is simply a loop

that continually moves in the direction of increasing value. It terminates when

it reaches a “peak”.

• Does not maintain a search tree, so the data structure for the current node need

only record the state and the value of the objective function.

Hill Climbing Search

5

• 8-queens problem

• The successors of a state are all possible states generated by moving a single

queen to another square in the same column. The heuristic cost function h is

the number of pairs of queens that are attacking each other.

• Hill-climbing algorithms typically choose randomly among the set of best

successors if there is more than one.

Hill Climbing Search

6

• Hill climbing is sometimes called greedy local search because it grabs a good

neighbor state without thinking ahead about where to go next.

• It turns out that greedy algorithms often perform quite well

• Hill climbing often gets stuck for the following reasons:

• Local maxima

• Ridges (屋脊)

• Plateaux (can be flat

local maximum or

a shoulder)

Hill Climbing Search

7

• For the 8-queens problem, steepest-ascent hill climbing gets stuck 86% of the

time, solving only 14% of problem instances. It works quickly, taking just 4

steps on average when it succeeds and 3 when it gets stuck—not bad for a

state space with 88 ≈ 17 million states.

• Might it not be a good idea to keep going—to allow a sideways move in the

hope that the plateau is really a shoulder? The answer is usually yes. This

raises the percentage of problem instances solved by hill climbing from 14%

to 94%. Success comes at a cost: the algorithm averages roughly 21 steps for

each successful instance and 64 for each failure.

Hill Climbing Search

8

• Stochastic hill climbing chooses at random from among the uphill moves; the

probability of selection can vary with the steepness of the uphill move.

• First-choice hill climbing implements stochastic hill climbing by generating

successors randomly until one is generated that is better than the current state.

• Random-restart hill climbing conducts a series of hill-climbing searches

from randomly generated initial states until a goal is found.

• The success of hill climbing depends very much on the shape of the state-

space landscape.

Hill Climbing Search

9

• Annealing is the process used to temper or harden metals and glass by heating

them to a high temperature and then gradually cooling them, thus allowing the

material to reach a low-energy crystalline state.

Simulated Annealing

10

• Instead of picking the best move, however, it picks a random move. If the

move improves the situation, it is always accepted. Otherwise, the algorithm

accepts the move with some probability less than 1. The probability decreases

exponentially with the “badness” of the move.

• The probability also decreases as the “temperature” T goes down: “bad”

moves are more likely to be allowed at the start when T is high, and they

become more unlikely as T decreases.

Simulated Annealing

11

• The local beam search algorithm keeps track of k states rather than just one.

• It begins with k randomly generated states. At each step, all the successors of

all k states are generated. If any one is a goal, the algorithm halts. Otherwise, it

selects the k best successors from the complete list and repeats.

• A local beam search seem to be nothing more than running k random restarts

in parallel instead of in sequence. In a random-restart search, each search

process runs independently of the others. In a local beam search, useful

information is passed among the parallel search threads.

• Stochastic beam search chooses k successors at random, with the probability

of choosing a given successor being an increasing function of its value.

Local Beam Search

12

• A genetic algorithm (or GA) is a variant of stochastic beam search in which

successor states are generated by combining two parent states rather than by

modifying a single state.

• GAs begin with a set of k randomly generated states, called the population.

Each state, or individual, is represented as a string over a finite alphabet—

most commonly, a string of 0s and 1s.

Genetic Algorithms

13

• A fitness function should return higher values for better states. The probability

of being chosen for reproducing is directly proportional to the fitness score.

• For each pair to be mated, a crossover point is chosen randomly from the

positions in the string.

Genetic Algorithms

14

• Finally, each location is subject to random mutation with a small independent

probability. In the 8-queens problem, this corresponds to choosing a queen at

random and moving it to a random square in its column.

Genetic Algorithms

15

• Suppose we want to place three new airports anywhere in

Romania, such that the sum of squared distances from each city

on the map to its nearest airport is minimized.

• The state space is then defined by the coordinates of the airports:

(x1,y1), (x2,y2), and (x3,y3). This is a six-dimensional space; we

also say that states are defined by six variables.

Local Search in Continuous Spaces

16

• Let Ci be the set of cities whose closest airport (in the current state) is airport i.

The objective function is

• To avoid continuous problems: discretize the neighborhood of each state. We

can move only one airport at a time in either the x or y direction by a fixed

amount ±δ. With 6 variables, this gives 12 possible successors for each state.

We can then apply any of the local search algorithms described previously.

Local Search in Continuous Spaces

17

• Many methods attempt to use the gradient of the landscape to find a maximum.

The gradient of the objective function is a vector ∇f that gives the magnitude

and direction of the steepest slope.

• In some cases, we can find a maximum by solving the equation ∇f = 0. In

many cases, however, this equation cannot be solved in closed form.

Local Search in Continuous Spaces

18

• For example, with three airports, the expression for the gradient depends on

what cities are closest to each airport in the current state. This means we can

compute the gradient locally; for example,

• Given a locally correct expression for the gradient, we can perform steepest-

ascent hill climbing by updating the current state according to the formula

where α is a small constant often called the step size.

Local Search in Continuous Spaces

19

• If α is too small, too many steps are needed; if α is too large, the search could

overshoot the maximum. The technique of line search tries to overcome this

dilemma by extending the current gradient direction until f starts to decrease

again.

• For many problems, the most effective algorithm is the venerable Newton–

Raphson method. This is a general technique for finding roots of functions—

that is, solving equations of the form g(x)=0. It works by computing a new

estimate for the root x according to Newton’s formula

Local Search in Continuous Spaces

20

Introduction

21

• The gradient of at , denoted by , is orthogonal to

the tangent vector to an arbitrary smooth curve passing

through on the level set

• The direction of maximum rate of increase of a real-valued

differentiable function at a point is orthogonal to the level set

of the function through that point.

• The gradient acts in such a direction that for a given small

displacement, the function increases more in the direction of

the gradient than in any other direction.

Newton’s Method

22

• Newton’s method for solving equations of the form is

also referred to as Newton’s method of tangents.

• If we draw a tangent to at the given point , then the

tangent line intersects the x-axis at the point , which we

expect to be closer to the root of .

• Note that the slope of at is

• To find a maximum or minimum of f, we need to find x such that the gradient

is zero (i.e., ∇f (x) = 0). Thus, g(x) in Newton’s formula becomes ∇f (x), and

the update equation can be written in matrix–vector form as

where Hf(x) is the Hessian matrix of second derivatives, whose elements Hij

are given by .

• Local search methods suffer from local maxima, ridges, and plateaux in

continuous state spaces just as much as in discrete spaces. Random restarts and

simulated annealing can be used and are often helpful.

Local Search in Continuous Spaces

23

• A constrained optimization problem is constrained if solutions must satisfy

some hard constraints on the values of the variables.

• The best-known category is that of linear programming problems, in which

constraints must be linear inequalities forming a convex set and the objective

function is also linear.

• Linear programming is probably the most widely studied and broadly useful

class of optimization problems. It is a special case of the more general problem

of convex optimization, which allows the constraint region to be any convex

region and the objective to be any function that is convex within the constraint

region.

Local Search in Continuous Spaces

24

Simple Examples of Linear Programs

25

• Formally, a linear program is an optimization problem of the

form

where . The vector inequality

means that each component of is nonnegative.

• Several variations of this problem are possible. For example,

we can maximize, or the constraints may be in the form of

inequalities, such as or . In fact, these

variations can all be rewritten into the standard form shown

above.

Example

26

• A manufacturer produces four different products:

there are three inputs to this production process: labor in person-weeks,

kilograms of raw material A, and boxes of raw material B. Each product

has different input requirements. In determining each week’s production

schedule, the manufacturer cannot use more than the available amounts of

labor and the two raw materials. The relevant information is presented in

this table. Every production decision must satisfy the restrictions on the

availability of inputs. These constraints can be written using the data in this

table.

• The erratic vacuum world

• The state space has eight states. There are three actions—Left, Right, and

Suck—and the goal is to clean up all the dirt (states 7 and 8).

• If the environment is observable, deterministic, and completely known,

then the problem is trivially solvable.

Searching with Nondeterministic Actions

27

• Suppose that we introduce nondeterminism. In the erratic vacuum world, the

Suck action works as follows:

• When applied to a dirty square the action cleans the square and sometimes

cleans up dirt in an adjacent square, too.

• When applied to a clean square the action sometimes deposits dirt on the

carpet.

• Instead of defining the transition model by a RESULT function that returns a

single state, we use a RESULTS function that returns a set of possible

outcome states. For example, in the erratic vacuum world, the Suck action in

state 1 leads to a state in the set {5, 7}

Searching with Nondeterministic Actions

28

• We also need to generalize the notion of a solution to the problem. For

example, if we start in state 1, there is no single sequence of actions that solves

the problem. Instead, we need a contingency (偶發、可能性) plan such as the

following:

• Thus, solutions for nondeterministic problems can contain nested if–then–else

statements; this means that they are trees rather than sequences. Many

problems in the real, physical world are contingency problems because exact

prediction is impossible.

Searching with Nondeterministic Actions

29

• AND-OR search trees

• In a deterministic environment, the only branching is introduced by the

agent’s own choices in each state. We call these nodes OR nodes.

• In a nondeterministic environment, branching is introduced by the

environment’s choice of outcome for each action. We call these nodes

AND nodes. For example, the Suck action in state 1 leads to a state in the

set {5, 7}, so the agent would need to find a plan for state 5 and for state 7.

These two kinds of nodes alternate, leading to an AND-OR tree.

Searching with Nondeterministic Actions

30

Searching with Nondeterministic Actions

31

• A solution for an AND–OR search problem is a subtree that (1) has a goal

node at every leaf, (2) specifies one action at each of its OR nodes, and (3)

includes every outcome branch at each of its AND nodes.

Searching with Nondeterministic Actions

32

• Try, try again

• Consider the slippery (須小心對待的) vacuum world, which is identical

to the ordinary (non-erratic) vacuum world except that movement actions

sometimes fail, leaving the agent in the same location. For example,

moving Right in state 1 leads to the state set {1, 2}.

Searching with Nondeterministic Actions

33

• There are no longer any acyclic solutions from state 1, and AND-OR-GRAPH-

SEARCH would return with failure. There is, however, a cyclic solution,

which is to keep trying Right until it works.

• We can express this solution by adding a label to denote some portion of the

plan and using that label later instead of repeating the plan itself. Thus, our

cyclic solution is

Searching with Nondeterministic Actions

34

• We now turn to the problem of partial observability, where the

agent’s percepts do not suffice to pin down the exact state.

• The key concept required for solving partially observable

problems is the belief state, representing the agent’s current

belief about the possible physical states it might be in, given the

sequence of actions and percepts up to that point.

Searching with Partial Observations

35

• Searching with no observation (sensorless problem)

• Assume that the agent knows the geography of its world, but doesn’t know its

location or the distribution of dirt. Its initial state could be any element of the

set {1, 2, 3, 4, 5, 6, 7, 8}.

• Consider what happens if it tries the action Right. This will cause it to be in

one of the states {2, 4, 6, 8}. Furthermore, the action sequence [Right, Suck]

will always end up in one of the states {4, 8}. Finally, the sequence [Right,

Suck, Left, Suck] is guaranteed to reach the goal state 7 no matter what the start

state. We say that the agent can coerce (強制) the world into state 7.

Searching with Partial Observations

36

• To solve sensorless problems, we search in the space of belief states rather

than physical states.

• Suppose the underlying physical problem P is defined by ACTIONSP ,

RESULTP , GOAL-TESTP , and STEP-COSTP. Then we can define the

corresponding sensorless problem as follows:

• Belief states: The entire belief-state space contains every possible set of

physical states. If P has N states, then the sensorless problem has up to 2N

states, although many may be unreachable from the initial state.

• Initial state: Typically the set of all states in P, although in some cases the

agent will have more knowledge than this.

Searching with Partial Observations

37

• The sensorless problem:

• Actions: Suppose the agent is in belief state b = {s1, s2}, but

ACTIONSP(s1) ACTIONSP(s2). If we assume that illegal actions have

no effect on the environment, then it is safe to take the union of all the

actions in any of the physical states in the current belief state b:

If an illegal action might be the end of the world, it is safer to allow only

the intersection, that is, the set of actions legal in all the states.

Searching with Partial Observations

38

• The sensorless problem:

• Transition model: The agent doesn’t know which state in the belief state

is the right one. For deterministic actions, the set of states that might be

reached is

With deterministic actions, b’ is never larger than b. With nondeterminism,

we have

which may be larger than b. The process of generating the new belief state

after the action is called the prediction step; b’ = PREDICTP(b, a).

Searching with Partial Observations

39

• The sensorless problem:

Searching with Partial Observations

40

• The sensorless problem:

• Goal test: A belief state satisfies the goal only if all the physical states in

it satisfy GOAL-TESTP. The agent may accidentally achieve the goal

earlier, but it won’t know that it has done so.

• Path cost: If the same action can have different costs in different states,

then the cost of taking an action in a given belief state could be one of

several values. For now we assume that the cost of an action is the same

in all states and so can be transferred directly from the underlying

physical problem.

Searching with Partial Observations

41

Searching

with Partial

Observations

42

• The sensorless problem:

• The preceding definitions enable the automatic construction of the belief-

state problem formulation from the definition of the underlying physical

problem. Once this is done, we can apply any of the search algorithms of

Chapter 3.

Searching with Partial Observations

43

• Searching with observations

• We might define the local-sensing vacuum world to be one in which the agent

has a position sensor and a local dirt sensor but has no sensor capable of

detecting dirt in other squares.

• The prediction stage is the same as for sensorless problems: given the action a

in belief state b, the predicted belief state is

• The observation prediction stage determines the set of percepts o that could

be observed in the predicted belief state:

Searching with Partial Observations

44

• The update stage determines, for each possible percept, the belief state that

would result from the percept. The new belief state bo is just the set of states in

that could have produced the percept

Notice that each updated belief state bo can be no larger than the predicted

belief state ; observations can only help reduce uncertainty compared to the

sensorless case.

Searching with Partial Observations

45

• Putting these three stages together, we obtain the possible belief states

resulting from a given action and the subsequent possible percepts:

Searching with Partial Observations

46

Searching

with Partial

Observations

47

• An agent for partially observable environments

• The design of a problem-solving agent for partially observable

environments is quite similar to the simple problem-solving agent.

• Two main differences: 1) the solution to a problem will be a conditional

plan rather than a sequence; if the first step is an if–then–else expression,

the agent will need to test the condition in the if-part and execute the then-

part or the else-part accordingly. 2) the agent will need to maintain its

belief state as it performs actions and receives percepts.

Searching with Partial Observations

50

• An agent for partially observable environments

• Given an initial belief state b, an action a, and a percept o, the new belief

state is:

Figure 4.17 shows the belief state being maintained in the kindergarten

vacuum world with local sensing, wherein any square may become dirty

at any time unless the agent is actively cleaning it at that moment.

Searching with Partial Observations

51

• A robot is placed in the maze-like environment. It is equipped with four sonar

sensors that tell whether there is an obstacle in each of the four compass

directions.

• Assume that the sensors give perfectly correct data, and the robot has a correct

map of the environment. But unfortunately the robot’s navigational system is

broken, so when it executes a Move action, it moves randomly to one of the

adjacent squares. The robot’s task is to determine its current location.

Searching with Partial Observations

52

Searching with Partial Observations

53

• Suppose the robot has just been switched on. Thus its initial belief state b

consists of the set of all locations. The the robot receives the percept NSW,

meaning there are obstacles to the north, west, and south, and does an update

bo = UPDATE(b), as shown in Figure 4.18(a). You can inspect the maze to see

that those are the only four locations that yield the percept NSW .

• Next the robot executes a Move action, but the result is nondeterministic. The

new belief state, ba = PREDICT(bo, Move), contains all the locations that are

one step away from the locations in bo. When the second percept, NS, arrives,

the robot does UPDATE(ba,NS) and finds that the belief state has collapsed

down to the single location shown in Figure 4.18(b).

Searching with Partial Observations

54

• That’s the only location that could be the result of

• With nondetermnistic actions the PREDICT step grows the belief state, but the

UPDATE step shrinks it back down—as long as the percepts provide some

useful identifying information.

• Sometimes the percepts don’t help much for localization: If there were one or

more long east-west corridors, then a robot could receive a long sequence of

NS percepts, but never know where in the corridor(s) it was.

Searching with Partial Observations

55

• So far we have concentrated on agents that use offline search algorithms.

They compute a complete solution before setting foot in the real world and

then execute the solution.

• In contrast, an online search agent interleaves computation and action: first it

takes an action, then it observes the environment and computes the next action.

• The canonical example of online search is a robot that is placed in a new

building and must explore it to build a map that it can use for getting from A to

B.

Online Searching Agents with Unknown

Environments

56

• Online search algorithms

• We stipulate (規定) that the agent knows only the following

• The agent cannot determine RESULT(s,a) except by actually being in s

and doing a.

Online Searching Agents with Unknown

Environments

57

• Online search algorithms

• In the maze problem shown in Figure 4.19, the agent does not know that

going Up from (1,1) leads to (1,2); nor, having done that, does it know

that going Down will take it back to (1,1).

Online Searching Agents with Unknown

Environments

58

• Online search algorithms

• Finally, the agent might have access to an admissible heuristic function

h(s) that estimates the distance from the current state to a goal state. For

example, in Figure 4.19, the agent might know the location of the goal

and be able to use the Manhattan-distance heuristic.

Online Searching Agents with Unknown

Environments

59

• Online search algorithms

• Typically, the agent’s objective is to reach a goal state while minimizing

cost. The cost is the total path cost of the path that the agent actually

travels. It is common to compare this cost with the path cost of the path

the agent would follow if it knew the search space in advance. This is

called the competitive ratio; we would like it to be as small as possible.

Online Searching Agents with Unknown

Environments

60

• Online search agents

• After each action, an online agent receives a percept telling it what state it

has reached; from this info., it can augment its map of the environment.

• The current map is used to decide where to go next. This interleaving of

planning and action means that online search algorithms are quite

different from the offline search algorithms we have seen previously.

• To avoid traveling all the way across the tree to expand the next node, an

online algorithm better expands nodes in a local order. DFS has exactly

this property.

Online Searching Agents with Unknown

Environments

61

Online Searching Agents with Unknown

Environments

62

• Online local search

• Like depth-first search, hill-climbing search has the property of locality in

its node expansions. In fact, because it keeps just one current state in

memory, hill-climbing search is already an online search algorithm!

Unfortunately, it is not very useful in its simplest form because it leaves

the agent sitting at local maxima with nowhere to go.

Online Searching Agents with Unknown

Environments

63

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Introduction
	Slide 22: Newton’s Method
	Slide 23
	Slide 24
	Slide 25: Simple Examples of Linear Programs
	Slide 26: Example
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

