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• The search algorithms that we have seen so far are designed to explore search 

spaces systematically. When a goal is found, the path to that goal also 

constitutes a solution to the problem. 

• In many problems, however, the path to the goal is irrelevant. In the 8-queens 

problem, what matters is the final configuration of queens, not the order in 

which they are added. 

• We need algorithms not worrying about paths at all.

Local Search Algorithms and Optimization 

Algorithms
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• Local search algorithms operate using a single current node and generally 

move only to neighbors of that node.

• They use very little memory—usually a constant amount

• They can often find reasonable solutions in large or infinite (continuous) 

state spaces for which systematic algorithms are unsuitable. 

• Local search algorithms are useful for solving pure optimization problems, in 

which the aim is to find the best state according to an objective function.

Local Search Algorithms and Optimization 

Algorithms
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• The hill-climbing search algorithm (steepest-ascent version) is simply a loop 

that continually moves in the direction of increasing value. It terminates when 

it reaches a “peak”. 

• Does not maintain a search tree, so the data structure for the current node need 

only record the state and the value of the objective function. 

Hill Climbing Search
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• 8-queens problem

• The successors of a state are all possible states generated by moving a single 

queen to another square in the same column. The heuristic cost function h is 

the number of pairs of queens that are attacking each other. 

• Hill-climbing algorithms typically choose randomly among the set of best 

successors if there is more than one. 

Hill Climbing Search
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• Hill climbing is sometimes called greedy local search because it grabs a good 

neighbor state without thinking ahead about where to go next. 

• It turns out that greedy algorithms often perform quite well

• Hill climbing often gets stuck for the following reasons:

• Local maxima

• Ridges (屋脊)

• Plateaux (can be flat 

local maximum or 

a shoulder)

Hill Climbing Search
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• For the 8-queens problem, steepest-ascent hill climbing gets stuck 86% of the 

time, solving only 14% of problem instances. It works quickly, taking just 4 

steps on average when it succeeds and 3 when it gets stuck—not bad for a 

state space with 88 ≈ 17 million states. 

• Might it not be a good idea to keep going—to allow a sideways move in the 

hope that the plateau is really a shoulder? The answer is usually yes. This 

raises the percentage of problem instances solved by hill climbing from 14% 

to 94%. Success comes at a cost: the algorithm averages roughly 21 steps for 

each successful instance and 64 for each failure.

Hill Climbing Search
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• Stochastic hill climbing chooses at random from among the uphill moves; the 

probability of selection can vary with the steepness of the uphill move.

• First-choice hill climbing implements stochastic hill climbing by generating 

successors randomly until one is generated that is better than the current state.

• Random-restart hill climbing conducts a series of hill-climbing searches 

from randomly generated initial states until a goal is found. 

• The success of hill climbing depends very much on the shape of the state-

space landscape. 

Hill Climbing Search
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• Annealing is the process used to temper or harden metals and glass by heating 

them to a high temperature and then gradually cooling them, thus allowing the 

material to reach a low-energy crystalline state. 

Simulated Annealing
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• Instead of picking the best move, however, it picks a random move. If the 

move improves the situation, it is always accepted. Otherwise, the algorithm 

accepts the move with some probability less than 1. The probability decreases 

exponentially with the “badness” of the move. 

• The probability also decreases as the “temperature” T goes down: “bad” 

moves are more likely to be allowed at the start when T is high, and they 

become more unlikely as T decreases. 

Simulated Annealing
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• The local beam search algorithm keeps track of k states rather than just one. 

• It begins with k randomly generated states. At each step, all the successors of 

all k states are generated. If any one is a goal, the algorithm halts. Otherwise, it 

selects the k best successors from the complete list and repeats. 

• A local beam search seem to be nothing more than running k random restarts 

in parallel instead of in sequence. In a random-restart search, each search 

process runs independently of the others. In a local beam search, useful 

information is passed among the parallel search threads. 

• Stochastic beam search chooses k successors at random, with the probability 

of choosing a given successor being an increasing function of its value. 

Local Beam Search
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• A genetic algorithm (or GA) is a variant of stochastic beam search in which 

successor states are generated by combining two parent states rather than by 

modifying a single state. 

• GAs begin with a set of k randomly generated states, called the population. 

Each state, or individual, is represented as a string over a finite alphabet—

most commonly, a string of 0s and 1s. 

Genetic Algorithms
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• A fitness function should return higher values for better states. The probability 

of being chosen for reproducing is directly proportional to the fitness score. 

• For each pair to be mated, a crossover point is chosen randomly from the 

positions in the string. 

Genetic Algorithms
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• Finally, each location is subject to random mutation with a small independent 

probability. In the 8-queens problem, this corresponds to choosing a queen at 

random and moving it to a random square in its column.

Genetic Algorithms
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• Suppose we want to place three new airports anywhere in 

Romania, such that the sum of squared distances from each city 

on the map to its nearest airport is minimized. 

• The state space is then defined by the coordinates of the airports: 

(x1,y1), (x2,y2), and (x3,y3). This is a six-dimensional space; we 

also say that states are defined by six variables. 

Local Search in Continuous Spaces
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• Let Ci be the set of cities whose closest airport (in the current state) is airport i. 

The objective function is

• To avoid continuous problems: discretize the neighborhood of each state. We 

can move only one airport at a time in either the x or y direction by a fixed 

amount ±δ. With 6 variables, this gives 12 possible successors for each state. 

We can then apply any of the local search algorithms described previously.

Local Search in Continuous Spaces
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• Many methods attempt to use the gradient of the landscape to find a maximum. 

The gradient of the objective function is a vector ∇f that gives the magnitude 

and direction of the steepest slope. 

• In some cases, we can find a maximum by solving the equation ∇f = 0. In 

many cases, however, this equation cannot be solved in closed form. 

Local Search in Continuous Spaces
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• For example, with three airports, the expression for the gradient depends on 

what cities are closest to each airport in the current state. This means we can 

compute the gradient locally; for example, 

• Given a locally correct expression for the gradient, we can perform steepest-

ascent hill climbing by updating the current state according to the formula

where α is a small constant often called the step size. 

Local Search in Continuous Spaces
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• If α is too small, too many steps are needed; if α is too large, the search could 

overshoot the maximum. The technique of line search tries to overcome this 

dilemma by extending the current gradient direction until f starts to decrease 

again. 

• For many problems, the most effective algorithm is the venerable Newton–

Raphson method. This is a general technique for finding roots of functions—

that is, solving equations of the form g(x)=0. It works by computing a new 

estimate for the root x according to Newton’s formula 

Local Search in Continuous Spaces
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• The gradient of    at     , denoted by            , is orthogonal to 

the tangent vector to an arbitrary smooth curve passing 

through on the level set 

• The direction of maximum rate of increase of a real-valued 

differentiable function at a point is orthogonal to the level set 

of the function through that point. 

• The gradient acts in such a direction that for a given small 

displacement, the function    increases more in the direction of 

the gradient than in any other direction. 



Newton’s Method
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• Newton’s method for solving equations of the form              is 

also referred to as Newton’s method of tangents. 

• If we draw a tangent to         at the given point       , then the 

tangent line intersects the x-axis at the point         , which we 

expect to be closer to the root      of             . 

• Note that the slope of        at       is 



• To find a maximum or minimum of f, we need to find x such that the gradient 

is zero (i.e., ∇f (x) = 0). Thus, g(x) in Newton’s formula becomes ∇f (x), and 

the update equation can be written in matrix–vector form as

where Hf(x) is the Hessian matrix of second derivatives, whose elements Hij

are given by                 . 

• Local search methods suffer from local maxima, ridges, and plateaux in 

continuous state spaces just as much as in discrete spaces. Random restarts and 

simulated annealing can be used and are often helpful. 

Local Search in Continuous Spaces
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• A constrained optimization problem is constrained if solutions must satisfy 

some hard constraints on the values of the variables. 

• The best-known category is that of linear programming problems, in which 

constraints must be linear inequalities forming a convex set and the objective 

function is also linear. 

• Linear programming is probably the most widely studied and broadly useful 

class of optimization problems. It is a special case of the more general problem 

of convex optimization, which allows the constraint region to be any convex 

region and the objective to be any function that is convex within the constraint 

region.

Local Search in Continuous Spaces
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Simple Examples of Linear Programs
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• Formally, a linear program is an optimization problem of the 

form 

where                                        . The vector inequality           

means that each component of      is nonnegative. 

• Several variations of this problem are possible. For example, 

we can maximize, or the constraints may be in the form of 

inequalities, such as              or             . In fact, these 

variations can all be rewritten into the standard form shown 

above. 



Example
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• A manufacturer produces four different products: 

there are three inputs to this production process: labor in person-weeks, 

kilograms of raw material A, and boxes of raw material B. Each product 

has different input requirements. In determining each week’s production 

schedule, the manufacturer cannot use more than the available amounts of 

labor and the two raw materials. The relevant information is presented in 

this table. Every production decision must satisfy the restrictions on the 

availability of inputs. These constraints can be written using the data in this 

table. 



• The erratic vacuum world

• The state space has eight states. There are three actions—Left, Right, and 

Suck—and the goal is to clean up all the dirt (states 7 and 8). 

• If the environment is observable, deterministic, and completely known, 

then the problem is trivially solvable. 

Searching with Nondeterministic Actions
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• Suppose that we introduce nondeterminism. In the erratic vacuum world, the 

Suck action works as follows: 

• When applied to a dirty square the action cleans the square and sometimes 

cleans up dirt in an adjacent square, too.

• When applied to a clean square the action sometimes deposits dirt on the 

carpet. 

• Instead of defining the transition model by a RESULT function that returns a 

single state, we use a RESULTS function that returns a set of possible 

outcome states. For example, in the erratic vacuum world, the Suck action in 

state 1 leads to a state in the set {5, 7}

Searching with Nondeterministic Actions
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• We also need to generalize the notion of a solution to the problem. For 

example, if we start in state 1, there is no single sequence of actions that solves 

the problem. Instead, we need a contingency (偶發、可能性) plan such as the 

following: 

• Thus, solutions for nondeterministic problems can contain nested if–then–else

statements; this means that they are trees rather than sequences. Many 

problems in the real, physical world are contingency problems because exact 

prediction is impossible.

Searching with Nondeterministic Actions

29



• AND-OR search trees

• In a deterministic environment, the only branching is introduced by the 

agent’s own choices in each state. We call these nodes OR nodes. 

• In a nondeterministic environment, branching is introduced by the 

environment’s choice of outcome for each action. We call these nodes 

AND nodes. For example, the Suck action in state 1 leads to a state in the 

set {5, 7}, so the agent would need to find a plan for state 5 and for state 7. 

These two kinds of nodes alternate, leading to an AND-OR tree. 

Searching with Nondeterministic Actions
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• A solution for an AND–OR search problem is a subtree that (1) has a goal 

node at every leaf, (2) specifies one action at each of its OR nodes, and (3) 

includes every outcome branch at each of its AND nodes. 

Searching with Nondeterministic Actions
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• Try, try again

• Consider the slippery (須小心對待的) vacuum world, which is identical 

to the ordinary (non-erratic) vacuum world except that movement actions 

sometimes fail, leaving the agent in the same location. For example, 

moving Right in state 1 leads to the state set {1, 2}. 

Searching with Nondeterministic Actions
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• There are no longer any acyclic solutions from state 1, and AND-OR-GRAPH-

SEARCH would return with failure. There is, however, a cyclic solution, 

which is to keep trying Right until it works. 

• We can express this solution by adding a label to denote some portion of the 

plan and using that label later instead of repeating the plan itself. Thus, our 

cyclic solution is

Searching with Nondeterministic Actions
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• We now turn to the problem of partial observability, where the 

agent’s percepts do not suffice to pin down the exact state. 

• The key concept required for solving partially observable 

problems is the belief state, representing the agent’s current 

belief about the possible physical states it might be in, given the 

sequence of actions and percepts up to that point. 

Searching with Partial Observations
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• Searching with no observation (sensorless problem)

• Assume that the agent knows the geography of its world, but doesn’t know its 

location or the distribution of dirt. Its initial state could be any element of the 

set {1, 2, 3, 4, 5, 6, 7, 8}. 

• Consider what happens if it tries the action Right. This will cause it to be in 

one of the states {2, 4, 6, 8}. Furthermore, the action sequence [Right, Suck] 

will always end up in one of the states {4, 8}. Finally, the sequence [Right, 

Suck, Left, Suck] is guaranteed to reach the goal state 7 no matter what the start 

state. We say that the agent can coerce (強制) the world into state 7.

Searching with Partial Observations

36



• To solve sensorless problems, we search in the space of belief states rather 

than physical states. 

• Suppose the underlying physical problem P is defined by ACTIONSP , 

RESULTP , GOAL-TESTP , and STEP-COSTP. Then we can define the 

corresponding sensorless problem as follows: 

• Belief states: The entire belief-state space contains every possible set of 

physical states. If P has N states, then the sensorless problem has up to 2N

states, although many may be unreachable from the initial state.

• Initial state: Typically the set of all states in P, although in some cases the 

agent will have more knowledge than this.

Searching with Partial Observations
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• The sensorless problem: 

• Actions: Suppose the agent is in belief state b = {s1, s2}, but 

ACTIONSP(s1)       ACTIONSP(s2). If we assume that illegal actions have 

no effect on the environment, then it is safe to take the union of all the 

actions in any of the physical states in the current belief state b:

If an illegal action might be the end of the world, it is safer to allow only 

the intersection, that is, the set of actions legal in all the states.

Searching with Partial Observations
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• The sensorless problem: 

• Transition model: The agent doesn’t know which state in the belief state 

is the right one. For deterministic actions, the set of states that might be 

reached is

With deterministic actions, b’ is never larger than b. With nondeterminism, 

we have

which may be larger than b. The process of generating the new belief state 

after the action is called the prediction step; b’ = PREDICTP(b, a). 

Searching with Partial Observations
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• The sensorless problem: 

Searching with Partial Observations
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• The sensorless problem: 

• Goal test: A belief state satisfies the goal only if all the physical states in 

it satisfy GOAL-TESTP. The agent may accidentally achieve the goal 

earlier, but it won’t know that it has done so. 

• Path cost: If the same action can have different costs in different states, 

then the cost of taking an action in a given belief state could be one of 

several values. For now we assume that the cost of an action is the same 

in all states and so can be transferred directly from the underlying 

physical problem.

Searching with Partial Observations
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• The sensorless problem: 

• The preceding definitions enable the automatic construction of the belief-

state problem formulation from the definition of the underlying physical 

problem. Once this is done, we can apply any of the search algorithms of 

Chapter 3. 

Searching with Partial Observations
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• Searching with observations

• We might define the local-sensing vacuum world to be one in which the agent 

has a position sensor and a local dirt sensor but has no sensor capable of 

detecting dirt in other squares. 

• The prediction stage is the same as for sensorless problems: given the action a

in belief state b, the predicted belief state is

• The observation prediction stage determines the set of percepts o that could 

be observed in the predicted belief state: 

Searching with Partial Observations
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• The update stage determines, for each possible percept, the belief state that 

would result from the percept. The new belief state bo is just the set of states in       

that could have produced the percept

Notice that each updated belief state bo can be no larger than the predicted 

belief state      ; observations can only help reduce uncertainty compared to the 

sensorless case. 

Searching with Partial Observations
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• Putting these three stages together, we obtain the possible belief states 

resulting from a given action and the subsequent possible percepts:

Searching with Partial Observations
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• An agent for partially observable environments

• The design of a problem-solving agent for partially observable 

environments is quite similar to the simple problem-solving agent. 

• Two main differences: 1) the solution to a problem will be a conditional 

plan rather than a sequence; if the first step is an if–then–else expression, 

the agent will need to test the condition in the if-part and execute the then-

part or the else-part accordingly. 2) the agent will need to maintain its 

belief state as it performs actions and receives percepts.

Searching with Partial Observations

50



• An agent for partially observable environments

• Given an initial belief state b, an action a, and a percept o, the new belief 

state is:

Figure 4.17 shows the belief state being maintained in the kindergarten 

vacuum world with local sensing, wherein any square may become dirty 

at any time unless the agent is actively cleaning it at that moment. 

Searching with Partial Observations
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• A robot is placed in the maze-like environment. It is equipped with four sonar 

sensors that tell whether there is an obstacle in each of the four compass 

directions. 

• Assume that the sensors give perfectly correct data, and the robot has a correct 

map of the environment. But unfortunately the robot’s navigational system is 

broken, so when it executes a Move action, it moves randomly to one of the 

adjacent squares. The robot’s task is to determine its current location.

Searching with Partial Observations
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• Suppose the robot has just been switched on. Thus its initial belief state b

consists of the set of all locations. The the robot receives the percept NSW, 

meaning there are obstacles to the north, west, and south, and does an update 

bo = UPDATE(b), as shown in Figure 4.18(a). You can inspect the maze to see 

that those are the only four locations that yield the percept NSW . 

• Next the robot executes a Move action, but the result is nondeterministic. The 

new belief state, ba = PREDICT(bo, Move), contains all the locations that are 

one step away from the locations in bo. When the second percept, NS, arrives, 

the robot does UPDATE(ba,NS) and finds that the belief state has collapsed 

down to the single location shown in Figure 4.18(b). 

Searching with Partial Observations
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• That’s the only location that could be the result of

• With nondetermnistic actions the PREDICT step grows the belief state, but the 

UPDATE step shrinks it back down—as long as the percepts provide some 

useful identifying information. 

• Sometimes the percepts don’t help much for localization: If there were one or 

more long east-west corridors, then a robot could receive a long sequence of 

NS percepts, but never know where in the corridor(s) it was. 

Searching with Partial Observations
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• So far we have concentrated on agents that use offline search algorithms. 

They compute a complete solution before setting foot in the real world and 

then execute the solution. 

• In contrast, an online search agent interleaves computation and action: first it 

takes an action, then it observes the environment and computes the next action. 

• The canonical example of online search is a robot that is placed in a new 

building and must explore it to build a map that it can use for getting from A to 

B. 

Online Searching Agents with Unknown 

Environments

56



• Online search algorithms

• We stipulate (規定) that the agent knows only the following

• The agent cannot determine RESULT(s,a) except by actually being in s

and doing a.

Online Searching Agents with Unknown 

Environments
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• Online search algorithms

• In the maze problem shown in Figure 4.19, the agent does not know that 

going Up from (1,1) leads to (1,2); nor, having done that, does it know 

that going Down will take it back to (1,1). 

Online Searching Agents with Unknown 

Environments
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• Online search algorithms

• Finally, the agent might have access to an admissible heuristic function 

h(s) that estimates the distance from the current state to a goal state. For 

example, in Figure 4.19, the agent might know the location of the goal 

and be able to use the Manhattan-distance heuristic.

Online Searching Agents with Unknown 

Environments
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• Online search algorithms

• Typically, the agent’s objective is to reach a goal state while minimizing 

cost. The cost is the total path cost of the path that the agent actually 

travels. It is common to compare this cost with the path cost of the path 

the agent would follow if it knew the search space in advance. This is 

called the competitive ratio; we would like it to be as small as possible.

Online Searching Agents with Unknown 

Environments
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• Online search agents

• After each action, an online agent receives a percept telling it what state it 

has reached; from this info., it can augment its map of the environment. 

• The current map is used to decide where to go next. This interleaving of 

planning and action means that online search algorithms are quite 

different from the offline search algorithms we have seen previously. 

• To avoid traveling all the way across the tree to expand the next node, an 

online algorithm better expands nodes in a local order. DFS has exactly 

this property. 

Online Searching Agents with Unknown 

Environments
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• Online local search

• Like depth-first search, hill-climbing search has the property of locality in 

its node expansions. In fact, because it keeps just one current state in 

memory, hill-climbing search is already an online search algorithm! 

Unfortunately, it is not very useful in its simplest form because it leaves 

the agent sitting at local maxima with nowhere to go. 

Online Searching Agents with Unknown 

Environments
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